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ABSTRACT

The main result in this paper is:

Theorem: If H e C R2n) and satisfies

(H1) H-1(1) bounds a starshaped neighborhood of 0 in R2n, Aw.

(H2) z *H # 0 for all z (1),

(H3 ) H(p,q) = H(-p,q) for all p,q c in, then there is a T > 0 such that

the Hamiltonian system
0 -id "-""'".

(HS) = "(z) '  = (i o)

possesses a T periodic solution (p(t),q(t)) C H-(1) with p odd about

0 and T/2 and q even about 0 and T/2.

The proof involves a new existence mechanism which should be useful in

other situations.
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SIGNIFICANCE AND EXPLANATION

Namiltonian systems are used to model the motion of discrete mechanical

systems. This paper establishes the existence of periodic solutions for a ph

class of such systems. The method developed to prove existence should be

useful for other such problems. IV-rJ -"
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ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF SYMMETRIC HAMILTONIAN SYSTEMS

Paul H. Rabinowitz

11. Introduction

Consider the Hamiltonian system of ordinary differential equations:

(HS) JR (a), J . (±o -id)
d i0

Here H , .2n , R, z - (p,q) with p,q c In , and id denotes the n x n identity

matrix. Several papers have investigated what conditions on H lead to the existence of

periodic solutions of (HS) having prescribed energy, i.e. H(z) is a given constant. See

e.g. [I-11]. (Other studies such as [12] treat the multiplicity of periodic solutions of

(HS) of prescribed energy.) In particular, it was shown in 14] that

Theorem 1.1: If H C CI(, 2n,R) and satisfies

(HI ) H (1) is the boundary of a starshaped neighborhood of 0 in R2n,

and

(H2 ) z H zCz) 0 0 on H-1l

then (HS) possesses a periodic solution on H (1).

In Theorem 1.1, "starshaped" means H-1(1) is homeomorphic to S2n-1 by a radial

projection map.

Our goal in this paper is to show that if H satisfies an additional symmetry .

condition, (HS) possesses a periodic solution having additional properties:

Theorem 1.2: If H C C1(,2nR) and satisfies (HI)-(H2) and

(H3 ) H(p,q) - H(-p,q) for all p,q C 30

then there exists a T > 0 and a T periodic solution (p(t),q(t)) of (HS) on

H-11(1) such that p is odd and q is even about t = 0 and
2- A
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periodic solutions of this type were studied by SEIFERT [1), RUIZ [2), WEINSTEIN [3],

GLUCK-ZILL R [7], HAYASHI [81, and BENCI [9] for C2 or smoother H's satisfying (H3 )

;o and having the form H(pq) = K(p,q) + V(q) with K and V suitably restricted.

F.
Different symmetries for (MS) have been treated by van GROESEN [10] and GIRARDI [11]. In

[10] it was shown that if H C C2 , satisfies (H2)1, -lC1) bounds a convex region and

H(p,q) -H(-p,q) = H(p,-q) for all p,q C le, then the conclusions of Theorem 1.2

hold. The convexity assumption on H( (1 plays a strong role in the existence argument

here. In [11] on the other hand, (H1)-(R2 ) and H(z) = H(-z) are assumed and it is

proved that there is a T > 0 such that (HS) possesses a 2T periodic solution on

H- (1) for which z(t + T) - -z(T) for all t C R.

Both [4) and [11] rely on minimax arguments and topological index theories to exploit

an SI symmetry associated with a variational formulation of (HS). Topological index

theories are often useful in obtaining multiple critical points of a symmetric functional

and indeed such multiplicity results were the main goal of [10-11] and enabled them to

obtain analogues of a theorem of ZKELAND and LASRY [12]. For the problem treated here

however, we will work directly in the space of T periodic functions p,q for which p

is odd about t - 0 and T/2 and q is even about 0 and T/2. The symmetries used

earlier in [4,10,11] are not longer present if one works in this space and therefore

another existence mechanism to treat (HS) is required. Indeed developing such a new

mechanism is one of our main goals here. In a future note, we will show how this method

can also be applied to treat the sort of situation studied in [1-3,5, etc.].

In §2, the solution of (HS) will be reduced to finding a critical point of an

associated variational problem. Existence of a critical point when H c C2  is carried

out in §3. Lastly §4 contains the CI case as well as the proof of a crucial

intersection theorem used in §3. For some of the technicalities of §2-4, we have

benefited from unpublished work of V. BENCI and the author.
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J2. Formulation of the Variational Problem

in this section the solution of (HS) will be reduced to finding critical points of a

variational problem. For technical convenience we assume for now that H e C 2 (22n,R).

The more general case of H e Cl(R2n,R) will be treated in §4.

The variational formulation of (14S) will take place in an "L2 , type of setting and

therefore the behavior of N outside of Hf'10) is important. Thus as in [4) we define *..

a new Hamiltonian R(z) which coincides with H on Hf 1(1) and grows at a controlled

*rate as * . Since H-1(1) bounds a starshaped region, for all z e R2n\(0}, there

is a unique cz(z) > 0 and w(z) e H-1 01) such that z - a~z)w(z). In fact, w depends

* ~~only on zi:, and a(z) - jzjjw(zfl . Define R(O) -0 and for z~ ,f~) az

It is easy to check that R~ c 2 (R2n\{0},ft), is uniformly bounded, and Ai is <'

-1
homogeneous of degree two. Moreover H (1) =H (1) and ii(p,q) is even in p. For

future reference, note the following estimates for g. Let

* (2.1) m = mtn iH(z)i M m nxRz

Then by the homogeneity of ifor all z c ~n

*(2.2) mjzI2 4 fl(z) C MIxj2

Lemma 2.3: Suppose there exists A~ > 0 and a 27r periodic solution C(T) O Tl )

* ~~(2.4) =Af ~

with (T) c R-1 (1), 1v odd about 0 and Nr and *~ even about 0 and wr. Then there

exists a T > 0 and a T periodic solution of (HS) of the type stated in Theorem 1.2.

* Proof: Set z(t) - ;(r(t)) where r e C1 is free for the moment. Then z is a

solution of (HS) if

(2.5) = RJA(Vr(t))) JHZ4(CUr(t)))

Sine f(1)= i'(1 an 14 g# 0 on thIs set, there is a function

6 48 C C1 (H- 1),R\{O1) such that ft.,(z) - 8(z)ff (z) for z C H- (1). Therefore 2.5 shows

(2.6) ~ 1 (rt) .*.

Further setting r(0) =0 and noting that 8 ,d 0, we can assume B>0 and r is a

-3-A
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strictly increasing function of t. Let T - 2r -1(w). Then the properties of C imply

if Z(t) - (P(t),Q(t)), P(O) - 0 - P(T/2) and Q'(0) -0 - Q'(T/2). zxtending P as an

odd function p about 0 and T/2 and Q as an even function q about 0 and T/2,

it follows that the resulting function z - (p,q) is a T periodic solution of (HS) on

H- (1) of the desired type.

Thus Levssa 2.3 reduces the proof of Theorem 1.2 to finding X > 0 and a 2w

*periodic solution C of (2.4). We will convert this question to that of solving a

variational problem. First an appropriate fun~ction space must be introduced. Let

X - (z - (p,q) C W, 2 (51 ,R2n)lIp is odd about 0 and w, q is even about 0 and .

* Here W 1/ (S1 ,R~n is the set of 2n tuples of 2w periodic functions

z - aje 'jt

such that

I ( + 1i)Ij2

j £z

* For smooth z c X, let -

Then

IA(z)I 4 conet. lzaM
2 ~

i.e. A is a continuous quadratic form on this (dense) subspace of X. Therefore A

extends continuously to all of X. This extension will still be denoted by A(z).

Let e1 ,..., C2n denote the usual basis in R 2n, i.e. e, (1,0,0,...), etc. and

* set

()Ispan~ekjn + 1 4 kc 4 2n)

X+Espan{(sin jt)e, - (cos Jte C 114 < 1 4 kc 4 n)

X- span{(sin Jx)ekc + (cos Jt)ekc+nI 11 < j < 1 4 kc 4 n).

-4-
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These spaces are mutually orthogonal in L 
2
(Sl,Rt

2
n). Moreover X X 0 * 0 X_ and if

2z + Z _CX

(2.8) IzI e :1 + A(z+) - (z-)

defines a norm on X which is equivalent to the W'/2,2(S1,R 2n) norm. (See e.g. (41.)

Setting

(2.9) IF(z) f fl(z)dt2w

the upper bound for 11in (2.2) implies T is well defined on X.

Prposition 2.10: With 11as above,

(i) I C C 1,Lip(X,R)l

(11) Y1 is compact. .*.

Proof: (i) Since A1 f C 2CX2n\{OI,g) and A11 is uniformly bounded, there is a

constant M, > 0 such that

(21)JR(z + C) - 11(z) - 9 z CilC1

for ll z~ £R
2n. Therefore for z,C e X, (2.11) and the continuous embedding of X

in L 2 (SI, R2n) imply that

(2.12) IY(z + T) (z) - fl(z) C dt -C 1 ICI I( M MICI

Thus (2.12) shows that T f C (X,R) and

(2. 13) Y'zZ- lz . dt

To see that 'F' is Lipschitz continuous, observe that

2wr
(2.14) UY',(z + W) - Y(z)I sup I.L (fl12(Z + w) - (z)) Cdtl

x CCX,W1I(1 0

-5--
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Since Azz is uniformly bounded on R2n\{o), there is a constant M3 > 0 such that V%

(2.15) IHZ(z + W) - RZ(z) I - 31-1 i
for all z,w c R2n . Hence (2.14)-(2.15) imply

1 2w

(2.16) ,,'(z + W) - ,(z6 M f 2w jljt <4 M9'
X* 4CX,IC111 0

for all z,w c X. "

(ii) Let (zj) be a bounded sequence in X. Since X is compactly embedded in

Lr(S 1 ,R 2 n ) for all r c [1,"), (see e.g. the argument for an analogous situation in

[131), along a subsequence, zj converges in L2(S1,R2nl to z c X. Hence by (2.16),

(2.17) I1'(Z.) - V'(z)I , < Hz - ZL 4 0
SX K4-,'.L2

and is compact.

Let M - -1(1).

Proposition 2.18: (1) M is a C'Lip manifold in X.

(ii) M bounds a starshaped neighborhood of 0 in X.

(iii) M is bounded in L2 (SI,R 2n).

Proof: For z c X\fo, by the homogeneity of ,

I'.2w

(2.19) 2'(z)z 2w £ Hz) a dt = 2(z) > 0

Hence M is a manifold and (i) of Proposition 2.10 shows it is C1,Lip. Moreover M is

the boundary of f(--1)) an open set. The homogeneity of H shows that any ray

through the origin in X meets M exactly once. Hence M bounds a starshaped region.

Lastly by (2.2), if z c M,

(2.20) m Zi C2 I (z) = 12ff L "2

1 2n

i.e. M is bounded in L2(S ,R).

-6-
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We will find a solution of the desired type as a critical point of AIM. This

functional is said to satisfy the (PS) +  condition if for any c > 0, whenever (zj) is

a sequence in M such that

(2.21) A(zj) + c

and

(2.22) A "'lz) - )lz) '(z) + 0 in X N

where

X(Z) (A'(Z),T'(Z)) *IY'(z)l .
x

then (z possesses a convergent subsequence. Thus the (PS) condition is a kind of

compactness condition. It is important that RIM satisfy this condition in order to

construct the "deformation mapping" used in J3.

Proposition 2.23: AIM satisfies the (PS)+ condition.
- 0 + "-"

Proof: Let (zj) C M and satisfy (2.21)-(2.22). Writing z, z + + Z- + z9 C X+ e

X" S X0, (2.22) and the homogeneity of A show

(2.24) 1 -I A'(z )(±z (zi) zjdtj + e U 1

where Ej + 0 as J Since (zj) is bounded in L2iS1,R 2n) as is (Z(z )) via
+0 s , ine (z) bonedi i o2

(2.15), by (2.24) and (2.8), &-"

2
(2.25) 1z 1 4 al~xz~ + 1)

Now by the homogeneity of A and i,

(2.26) 21A(zj) - )(zj)I = IA'(zj)zj " A(zi)T"(zi)zjl < C 1z I

Combining (2.25) and (2.26) gives

(2.27) IA(zj) - X(zj)l 4 a2 (I)lz ()I + 1)1/2

Recalling that A(zj) * c, (2.27) shows X(zj) is a bounded sequence and (2.25)

implies (zj) is bounded in X. Consequently (2.26) yields X(z,) c > 0. Let L

denote the duality map from X to X. Then

-7-



(2.28) L(A'(Zj) - ~z)Yg(zj)) Z z -)(z)LYI(zl) + 0

Thus the boundedness of (X(zj) and (zj), (ii) of Proposition 2.10, and (2.28) show

- 00
'i. ~ z ,j. Zj, and -since X is finite dimensional z covreao0asbeune

j. coveg aln -ubeune



13. Existence of a Solution

In this section, the existence of a critical point of AIM will be established.

Standard arguments then lead to a solution of (2.4) and hence (by Lemna 2.3) of (HS) of

the desired type. A minimax argument will be used to get a critical point of AIM.

important role in any minimax argument is played by the so-called deformation mapping.

The following proposition lists its properties in our setting. For c > 0, let

Ac (z cMIA(z) < c) and

Kc (z cAC ) - c and A['(z) -01 "

Proposition 3.1: Let c, £ > 0. Then there exists an e c (0,j) and n e C([0,i] x X,X)

such that

1°  i(s,.) is a homeomorphiem of X onto X for each a e [0,1].

20 i(1,Z) z if A(Z) i tc - Zc + i] and if ly(z) - if .

30 Inr(,z) - zi 1 I

40 n(s,M) -M for each s c [0,1].

0 + -+-5 If P ,P- denote respectively the orthogonal projectors of X onto X+,X , then

P± n(s,z) e$8(s'Z)z + K"(",z)

where 8 £ C(O,1] x X,I+ ) and K± is compact.

60 if rc , 4, n(1,Ac+C) C Ac."

Proof: Most of the assertions are standard. In particular I and 60 as well as the

precise definition of w below can be found in 114]. (It is in proving 60 that the

(PS)+ condition is used.) Therefore we will only verify 20-50.

The function n satisfies an ordinary differential equation of the form

(3.2) _ w(n)L[_E X-( [A'(T) - n(0,z) z

for z f X. The function W f C(X,R) is Lipschitz continuous and is chosen so that

0 4 w(z) 4 1, the right-hand side of (3.2) in norm does not exceed 1, w(z) - 0 if

A(z) i (c - Z,c + i1 or if If(z) - 11 > , and (z) 0 0 if z E M and A(z) is2
° 3

near c. This implies that (3.2) has a solution i(s,z) c C(m x X,X) satisfying 20-30.

The form of the right-hand side of (3.2) shows I'(n(s,z)) An B 0 and therefore

-9-
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Tlnle,z)) E Y(nlO,z)) = Y(z). In particular if z c M, so is n(s,z) and 40 holds.

Lastly to prove 50, note that LA'(z) - z+ - z-. Therefore Prn B n-' satisfies

(3.3) -s ± ±

Treating n as being known, (3.3) shows i± satisfies an inhomogeneous linear equation

whose solution is

(3.4) n±(s,z) = [exp(T a (n(rz))dr)lz ± + K±Cs,z)

*i where

K+-ls,z) 8 1 [exp(fT (n(r,z))dr)lS n( ,zlld'

and i2

S±(y) = W(y)X(y)P± LY'(y)

Thus n is of the form asserted in o."

It remains only to show that K is compact. Note first that S± : + * X is

compact. For convenience we drop the superscripts ± for S and K. Indeed if (yj)

is bounded in X and ,(yj), ( , it ) along some subsequence, then w(yj) = 0 and

(Syj) 0. Thus we can assume ,(yj) e f y for all j c V. Since (0) -0, this

implies (yj) is bounded away from 0. Therefore

lY'Ivj3 ) Y'(Y ) yj 2?(y "
x * .lyI

is bounded away fom 0. It follows that ()(yj)) is a bounded sequence and therefore by

(ii) of Proposition 2.10, S(yj) has a convergent subsequence.

To get the compactness of K, we use a variant of an argument of SENCI (15]. Let

B C X be bounded. Without loss of generality, B - BR, a ball of radius R about 0.

By 30 of Proposition 3.1, n(10,1] x BR) C BR+ I . Therefore S(n([0,1] x BR)) C S(BR+1)

which is compact. If

-10-
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0 . .0

Y B(awla 1(0,1], w c S(aR.j)}

then Y is compact as is Yits closed convex hull. Recalling that w(C) c(0,1j, it

follows that for each it e 10,s] and zeBR

jA.

Z S(exp(fT w(f(r,z))drflS(r(,z)) cY

Hence for a e (0,13,

IC is compact, and the proof is complete.

Now define M X* 0 M

W - xO 0  span~g)}

where 1 = (sin t)e, (cosn t)en+i c X . Set M W (I Al. Define

(3.6) a S inf A(z)
ZCM*

and

* (3.7) 5 SUP A(z).

Propoition -3.8: 0 < a 4 <n -

Proof: If z c Xe, A(z) - I0 If a - 0, 0 CM M+. Since by (ii) of Proposition

2.18, M bounds a neighborhood of 0 in X, this is impossible and a > 0. Next

observe that

a 4 inf A(z) 4sup A(z)
span{wlrhM

Finally note that if z e M, z r(z)v + z+ z-. Therefore since h(T) v i,

(3.9) A(z) 4 r 2 (z)7r

Since z c M, by (2.2),

4 -
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" 2w

(3.10) f mIfz2dt < 1 = T(z)
0

*Hence (3.10) and the orthogonality of X0, xtin L2  imply

0 ,s'

(3.11) 2w r(z)
2 

t 191
2
dt = 2wrlz)

2

Therefore (3.7) and (3.11) show

(3.12) i c wr(z)2 C-
Our goal is to obtain a critical value c of AIM via a minimax argument. The

class of maps which will be used to define c can now be introduced. Let r denote the .

"-' set of h c C(X,X) satisfying the following three conditions: o '
I%

1r1) h(z) - z if A(z) j [0,i + 1] or if IY(z) - 11 •

(r2 ) Ph(z) - eo(Z)z" + Q(z) where 9 c C(X,K ), 0 4 9 4 y, y depending on h, and

Q is compact.

*. )13 h : M + M

Remark 3.13: Observe that r is closed under composition. Moreover 1°-50 of Proposition

3.1 imply m(1,.) e r provided that 0 4 c - i C c + E < 5 + 1. This inequality holds in

particular if c e (0,i] and F is chosen appropriately. .

The mappings in r satisfy an important intersection property.

Proposition 3.14: If h e r, then h(-) fl+ ,' S.-

This proposition will be proved in 54. ssuming it for now, define

(3.15) c inf sup A(h(z))

a'. Proposition 3.16: a < c 4 and c is a critical value of Al . "';

Proof: If h e r, by Proposition 3.14,

(3.17) sup A(h(z)) ; sup A(C) ) inf A(C) a r

Scm- lch(M)CM~r

-12-
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since (3.17) holds for all h e , c a. On the other hand h(z) sz c r. consequently

(3.18) C ( sup A(Z) i.

To prove that c is a critical value of AIM, suppose on the contrary that c "6.

Then if 1 < min(- 5,1), Remark 3.13 shows n(1,*) as determined from Proposition 3.1

belongs to r. Choose h c r such that

(3.19) sup A(h(z)) 4 c + e "S

zd.-

where e is obtained from Proposition 3.1. Since n(1,h) C r, by 60 of Proposition 3.1,

(3.15), and (3.19),

(3.20) c ( sup A(n(1,h(z))) C o -c

sdf.

a contradiction and the proposition is proved.

Completion of proof of Theorem 1.2 for H c C2 
: By Proposition 3.16, there is a z e M

such that A() - c and

(3.21) (A'(2) - X(z)Y(1 ))() - 0

for all C e X. This implies z is a classical solution of (2.4). indeed z e x

implies Rz) L2 (S 1,Rn). Moreover by (H3 ), Rp(p(t),q(t)) is odd about 0 and i

and Hq(p(t),q(t)) is even about 0 and w. Taking I 1 in (3.21) yields

[HR(z(t))] = 0 where

2w
[w] - f w(t)dt .

.291
0

Since fp (p(t),q(t))] = 0, Fourier expansion shows the equations 71

(3.22) (i) - -X(z) (p(t),q(t))
dt q

(ii) dQ=A(Z)9 (p(t),q(t))

dt p

have a unique solution Z - (P,Q) C X t WI, 2 (Sl,R 2n) with [QI = [q). For smooth

- (p,*) c X, taking the inner product of (3.22) (i) with 9 and (ii) with 0 gives

-13-
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(3.23) (AIMZ - )(z)Y'(z))(0) 0

Comparing (3.21) and (3.23) shows

2w*I
(3.24) f ((p -P) * -(q -Q) *)dtO0

for all smooth (9.*) c X where (p - PI 0 - Iq- Q). Hence

z - Z c W"12C(S I, R) r C(SI113
2 n). Thus (3.22) shows a c C1 (S1 ,D3~n) and in a classical

solution of (2.4). But (2.4) is a Hamiltonian system to B~z~t)) is independent of t.

(3.25) 1 7 z f f(z~t))dt A (z(t))

so z~t) cl' H-'(1). Finally Leoma 2.3 gives a solution of the desired type of (HS).

-14-.
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14. The Intersection Theorem and the General Case of Theorem 1.2

In this section we will prove the intersection theorem: Proposition 3.14, and obtain

the CI case of Theorem 1.2. For the former result, the following technical result is

required:

Proposition 4.1: Let V be a k dimensional subspace of 1n  and V its orthogonal

complement. Suppose h c C(Rn,Rn) and satisfies

(h1 ) h -id on V-

and

(h2 ) there is an R > 0 such that h - id on Rn\BR•

Let * C C (On,R) and satisfy

(01) *(0) " 0 and x * '(x) > 0 for x $ 0

and

(*2) there is a P c (0,R) such that 4'I(P) C BR.

Let v E V r )B1 and set Y - span{v} * V . Then there is a E c Y such that

(4.2) p( ) p and h(E) e V

Proof: Let Q - {rvl0 < r < R} 0 (Sr)V) so Q C Y. We will find C C Q. Let P and

I
P denote the orthogonal projectors of ln onto V and V . Solving (4.2) for E e Y

is equivalent to finding C Y V such that

(4.3) (1) C(C) - P ....
(ii) Ph( M) 0.

For y C Y, set

Y) ((y),P h(y))

Identifying R Y wit, i x and Q with a subset thereof, t can be considereA

to be a continuous map of I x ln 'k  into Itself. Any zero of 4 is a solution of

(4.3). Consider di(,Q,(pO)), the Brouwer degree of 4 with respect to the bounded

open set Q and the point (p,0). we will show this degree equals I and therefore (4.3)

has a solution in Q. In order for the degree to be defined, it is necessary that '

I$ (P,0) on Q. Writing y c Q as (r,w) f R x 10-k, if r 0, by (hi), h - id

-15-
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so by 0 *(y) - ((w),w) ) (pO). If r - R, (h2 ) implies h - id and

f(y) - (*(Rv + w),w) 0 (p,0) since I(Rv) > P via (*1)-(*2). Finally if Iw - R, (h2 )

implies h - id and 0(y) - (*(rv + w),w) j (p,0). Therefore d(#Q, (p,O)) is

defined. We claim

(4.4) d(#,Q(P,O)) - d(id,Q,(p,O))

Since (p,0) e Q via (*2),

d(id,Q,(p,O)) - I

and the proof is complete. To verify (4.4), consider the hofotopy

te(y) - (Or + (I - 6)*(y),p h(y))

* for y c 0 and 0 e (0,11. Arguing as for 9,if r =0,

to(y) - ((1 - 8)#(w),w) 0 (0,0); if r = R, 0(y) (eR + (1 - 0)#(Rv + w),w) # (p,0)

since R, 100(v) > P1 if IvI - R, 0 (y) - (or + (i - e)*(rv + w),w) , (P,0). Since

00 (y) - 4(y) and 0 1 (y) - y on BQ, the homotopy invariance property of Brouwer degree

yields (4.4) and the proof is complete.

Remarks 4.5: (i) The same hypotheses and an appropriately modified 9 also yield an

y Cr Y such that h(y) C V A *'1(0 ). This fact can be used to obtain a critical value -.

of AIM as a maximin rather than a minimax. (Ui) An examination of the proof of

Proposition 4.1 shows we need merely take 0 cC(SPR) and weaken (*I) to #(0) - 0

and (R) > p for some v c V 0 aB1. Also at the expense of redefining BR, V and V

can be any complementary subspaces of 1n.

Now we can give the:

tmProof of Proposition 3.14: Let Xi denote the subspaces of X defined by restricting

j to 1 (( 1 4i in the definition of X+. Let X i - X 0 . XX S Xi and let Pi denote

the projector of X onto Xi. Define hi(e) S Pih(z). By (2.2),

Y(z) 1 ,z, 2 •
2W L2

Hence F(s) * - as 10 * - uniformly for z c Xi . In particular there is an Ri > 0

such that F(s) ) 2 if z c Xi and Izl o Ri . Therefore if h e r, by (rl),

-16-
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h(z) - a =hi(z) if z e X, and Is ) Ri . Moreover if a C X0 x, &(Z) 4 0.

Therefore by (r1 ) again, hi(z) - z on X0 * X1. Since I satisfies (1)-(*2) of

Proposition 4.1, this result implies there is a z a Wi  M- such that hi si) x

whereW, = x
0  * x 9 span(9).

We claim (zi )  is bounded in X. Let zi - z
0 + z! + zi. As was noted earlier,

these components of zi are mutually orthogonal in L
2
. By Proposition 2.18 (i1),

(si) is bounded in L
2
(S1,RL2n). Since X

0  
is finite dimensional and z+ is a bounded

multiple of , z0 + ) is bounded in X. If (z-) is unbounded,

A(zi) - I - I + Therefore for large i, h(z) = zi - hi(zi) Ci f)M x i,

i.e. zi 4 + for large i and (zi) is bounded in X. It is clear that (z0 + +)

possesses a convergent subsequence. By (r 2),

e9 ( z i )

0 P-hi(zi) " z! + P-PiQ(z -

or
-4p(z l )

(4.6) ~= -(~ - i~j

Since Q is compact and 0 4 9(*) • Y, (4.6) shows (z-) also has a convergent

subsequence along which zi  z c M'. Since h is continuous, Pih(zi) + h(z) X.

Finally by (r3), h(z) e M+. Thus h(M') n M+ 0 A and the proof is complete.

Wext we will give the

Proof of Theorem 1.2 for H £ cC (,
2
nR), Let (9k) be a sequence of C2  

functions which

are homogeneous of degree 2, satisfy (H 3), and converge to H in C
1 

uniformly in a

neighborhood of S2n 1 . 
The C

2 
version of Theorem 1.2 implies there is a zk c X which %

is a classical solution of

(4.7) ;k 
=  

k Hks(k
) "'

and z k (0) ).Equation (4.7) implies that

X. 21

(4.8) ck B ak) =A-( z.-k • JRkz(z, )dt =21r
0

-17-
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By Proposition 3.16, ck > 0. Suppose that (ck) is bounded away fro
m  

0 and -- Then

(4.8) shows the same is true for (Ak). Therefore (4.7) provides L" bounds for k and

(4.7) and the krzela-Ascoli Theorem imply a subsequence of (Aksk) converge in e
+ x C

1

to a solution (XC) of (2.4). Following the CI version of the proof of Lemma 2.3 then

gives a solution of (HS) of the desired type. (Now B in (2.6) is merely continuous so

(2.6) need not have a unique solution but any solution will suffice.)

It remains to get the bounds for ck. By Proposition 3.16, there are constants k'

Ck such that

where k, i are defined in (3.6), (3.7) with M -Mk. By (3.12), 5 C Nm where

mk is defined in (2.1). Since Hk + 9 uniformly on S2n-1, mk + m so for large k,

in > m /2 and

(4.10) ck 4 (k 4 2wrm
1

Thus (ck) is bounded away from -. To get a lower bound for c k, recall that by (2.2),

4. k(z) 4 14kjzj2

with Kk defined in (2.1) and k + K as h + -. Hence Rk 4 214 for large k and if

I 21 2w
1= f k ¥f -dt Yes) . ..

0 0

If z e Y-(1), there is an az) 1 such that

2w

T, k(ak(z)z) I 2 !,i(a k(z)z)dt 1 .
0

Therefore

(4.11) _ inf A(z) 4
z 'I(1)tK

+

for large k. The argument of Proposition 3.8 shows a* > 0. Hence (4.9) and (4.11)

show (ck ) is bounded from below and the proof is complete.

",: -18-
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